Review Updates and New Reviews using RoB 1

- This guidance is in eight sections, in the order that they appear in a published review.
- For a full review and review updates using RoB 1, use all eight sections.
- Please read the KEY POINTS sections where available.
- Example text are largely based on analysis strategy 1 and are in greyed out italics. Notes and comments from us are in plain text.

Need help?
If at any point you need help or advice with your protocol, review or update please contact any of our friendly and knowledgeable Managing Editors (h.nagels@auckland.ac.nz; e.b.kostova@amsterdamumc.nl; cochrane.MDSG@auckland.ac.nz). We are here to help you successfully complete your review.

Common abbreviations:
- SoFs – Summary of findings
- PLS – Plain language summary
- RoB – Risk of bias
- CGF – Cochrane Gynaecology and Fertility
CONTENTS
Part A - Important information to read before starting a review ... 3
Part B – Abstract .. 5
Part C - Plain language summary ... 7
Part D – Methods ... 9
 Criteria for considering studies for this review .. 9
 Search methods for identification of studies ... 10
 Data collection and analysis ... 13
 Core outcome sets and definitions ... 21
Part E – Results .. 25
 Description of studies ... 25
 Included studies .. 25
 Excluded studies .. 25
 Risk of bias in included studies ... 25
 Effects of interventions ... 27
 GRADE evidence table – suggested statements ... 30
Part F- Discussion .. 31
 Summary of main results .. 31
 Overall completeness and applicability of evidence ... 31
 Quality of the evidence ... 31
 Potential biases in the review process .. 31
 Agreements and disagreements with other studies or reviews .. 31
Part G - Authors’ Conclusions ... 32
 Implications for practice ... 32
 Implications for research .. 32
 Differences between protocol and review .. 32
Part H - Copy-Editing ... 33
Part A - Important information to read before starting a review

All authors please read this section before starting your review - it will save you time! Refer back to this list of helpful tips and common errors as you go through each section of your review. By far the most common problems with reviews involve the issues listed below:

Methods

- In general, do not exclude studies on the basis of their reported outcome measures; take care to determine if relevant outcomes are not available because they have not been measured rather than simply not reported.
- Define in advance details of what are acceptable outcome measures (e.g. differing scales, time-points), and state a preference order when there are several possible measures.
- Outcomes must be prespecified based on clinical importance. We encourage using a core outcome set – refer to page 21.
- Keep subgroup analyses to an absolute minimum and explain the rationale for these.
- If planning any departures from the Methods specified in the protocol, you must check with editorial base first. Once changes are approved by editorial base, document and justify any changes in the review section ‘Differences between the protocol and review’.
- It is now mandatory for authors with our group to contact study authors in order to obtain or confirm data. This includes details to inform risk of bias assessments, details of interventions and outcomes, and study results.
- If you are updating a review you must check if the methods are still clinically and methodologically sound before you start. Contact your ME to discuss this before starting.

Reporting results

- Include all pre-specified comparisons and outcomes: if there are no relevant data, say so.
- Use the same order of comparisons and outcomes throughout the review as listed in the methods. Do not reorder comparisons and outcomes on the basis of results.
- Use this format for presenting results: (RR 0.89, 95% CI 0.75 to 1.05, I² = 31%, 3 studies, 811 women; low-quality evidence; Analysis 1.1).
- Interpret the main findings in absolute terms e.g. if 10% of women taking placebo experience pain, between 2% and 5% of those using XX will do so (see page 27 key points on how to format your findings).
- Do not confuse lack of evidence of an effect with evidence of a lack of effect: say something like “There was insufficient evidence to determine whether there was a difference” not “There was no significant difference”.
- As "no evidence of a difference" may imply equivalence, we do not use this anymore (see page 27 for key points on how to format your results).
- Consider clinical rather than statistical significance.
- Interpret subgroups very cautiously. In general, do not report them in the abstract.
- If investigating subgroup differences, present an overall plot or figure containing all subgroups, rather than multiple forest plots.
- Include the total sample size and number of participants by arm for each included study in the Characteristics of Included Studies table.
- There are options for presenting the primary analyses, including restricting analyses to low risk of bias studies: see the Data synthesis section in this guidance and section 7.6.2 of the Cochrane Handbook.
• Ensure mandatory sensitivity analyses are conducted for the type of data synthesis you use as stated in your methods (see page 17).

• If the odds of an outcome (beneficial e.g. live birth or detrimental e.g. adverse effects) increase with the intervention it will be displayed graphically in the meta-analyses to the right of the centreline. If the odds of an outcome decrease with the intervention, it will be displayed on the left of the centreline.

Conclusions
In summary parts of the review abstract, plain language summary and summary of findings:

• Include the same outcomes for these sections: this means including all main outcomes (primary outcomes, adverse events and prespecified secondary outcomes).

• Include the same comparisons: those that are clinically most important specified at the protocol stage, not on the basis of the results.

• Incorporate the findings of the GRADE assessment.

• Be 100% consistent with wording across all these sections.

Summary of findings table

• Specify detailed plans for the summary of findings (SoF) table in the Methods section (see page 20).

• The SoF table should be prepared once the study data have been entered, and before the results section is written.

• Include max 7 main outcomes (primary outcomes, adverse events and prespecified secondary outcomes).

• Clearly explain SoF evidence downgrades in footnotes: e.g. We downgraded the evidence by two levels, due to very serious imprecision: only 29 events.

• When you reach this stage, before proceeding any further, please submit your review to our Managing Editor for an editorial check.

• For help with preparing a summary of findings table, see Chapter 14 of the Handbook, otherwise contact us.

Conflict of Interest policy
Cochrane has a new COI policy which applies to all review authors. It is critical that ALL authors read and comply with the new policy. The Quick Guide for Authors provides an overview of the policy and should be read in conjunction with the full COI policy. It is the responsibility of all authors to advise CGF of any potential conflicts (financial and non-financial) prior to and during the review process. Reviews that do not comply with the COI Policy may not be published in the Cochrane Library. Important additional restrictions to authorship include:

• The first and last authors must not have:
 - any relevant financial interests
 - been involved in industry-controlled studies eligible for inclusion in the review.

• Overall, 67% (two-thirds) of the authors must be free of relevant conflicts.

• Anyone who has been involved in the conduct, analysis, and publication of a study that could be included in the review cannot:
 - Determine the overall study inclusion and exclusion criteria
 - Make study eligibility decisions about, extract data from, carry out the risk of bias assessment for, or perform GRADE assessments of that study.
Part B – Abstract

KEY POINTS

- Report all main outcomes as explained in Part A - Important information to read before starting a review.
- Note that the effect estimate in the abstract should not include the I².
- Do not report subgroup analyses in the abstract.
- Structure the abstract by comparison rather than by outcome.
- Always report outcomes in the same order as reported in the methods.
- Do not reorder comparisons and outcomes on the basis of results.
- Aim to limit the abstract to fewer than 700 words. Absolute maximum is 1000 words.

Example text:

Background
Treatment B is commonly used to optimise the chance of live birth in women undergoing assisted reproductive technology (ART). However, it is known to increase multiple pregnancy rates, potentially causing maternal and perinatal morbidity. Treatment A is an alternative intervention which may reduce the risk of multiple pregnancy. We compared the benefits and risks of the two treatments.

Objectives
To evaluate the effectiveness and safety of Treatment A in women undergoing ART.

Search Methods
We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL (now containing output from two trials registers and CINAHL), MEDLINE, Embase and PsycINFO on XXX 20YY together with reference checking and contact with study authors and experts in the field to identify additional studies.

Selection criteria
We included randomised controlled trials (RCTs) of the use of Treatment A compared with Treatment B for infertile women.

Data collection and analysis
We used standard methodological procedures recommended by Cochrane. The primary review outcomes were cumulative live birth and multiple pregnancy. Other adverse effects were a secondary outcome. Due to high risk of bias associated with some of the studies, primary analyses of all review outcomes were restricted to studies at low risk of selection bias. Sensitivity analysis including all studies was then performed.

Main results
We included four RCTs (811 women analysed). The evidence was low to moderate quality: the main limitations of all studies were serious risk of bias due to poor reporting of study methods, and serious imprecision.
Treatment A vs Treatment B

The primary analysis was restricted to studies at low risk of selection bias, which left only one study included. We are uncertain whether Treatment A compared to Treatment B has an effect on cumulative live birth rate, as only one study is included in the analysis and the confidence interval is wide (RR 1.11, 95% CI 0.78 to 1.59, 1 study, 210 women; low-certainty evidence; Analysis 1.1). Evidence suggests that if the chance of live birth following Treatment B is assumed to be 34%, then the chance with Treatment A would be 27% to 55%. When all studies were included in the sensitivity analysis, we are uncertain of the effect of Treatment A compared to Treatment B on cumulative live birth rate (RR 1.00, 95% CI 0.92 to 1.09, 3 studies, 621 women; low-certainty evidence; Analysis 1.1.2). The evidence suggests that if the chance of live birth following Treatment B is assumed to be 37%, the chance following Treatment A would be between 34% and 40%.

When the primary analysis was restricted to studies at low risk of selection bias, two studies were included. Treatment A may reduce multiple pregnancy rates compared with Treatment B (RR 0.10, 95% CI 0.02 to 0.28; 2 studies, 379 women; low-certainty evidence; Analysis 1.2). This suggests that if the chance of multiple pregnancy following Treatment B is 13%, then the chance following Treatment A would be 0% to 3%. When all studies were included in the sensitivity analysis, Treatment A probably reduces multiple pregnancy rates compared with Treatment B (RR 0.04, 95% CI 0.01 to 0.15, 4 studies, 811 women; moderate-certainty evidence; Analysis 1.2.2). This suggests that if the risk of multiple pregnancy following Treatment B is assumed to be 13%, the risk following Treatment A would be between 0% and 2%.

There was insufficient evidence to reach a conclusion regarding other adverse effects, as no studies reported data suitable for analysis.

Authors’ conclusions

Treatment A may reduce the risk of multiple pregnancy in women undergoing ART but the effect on the cumulative live birth rate is uncertain. Data were lacking on other adverse effects. The pooled results should be interpreted with caution, as the evidence was of low-certainty due to high risk of bias present in most of the included studies and an overall low level of precision.
Part C - Plain language summary

KEY POINTS

- Format the plain language summary (PLS) under the five headings used in the example text below.
- Report all main outcomes in the abstract and PLS and summarise any evidence about adverse effects (including lack of data).
- Aim to limit the PLS to fewer than 400 words. Absolute maximum is 700.
- Translate the effect estimates for important clinical outcomes in a user-friendly way. Rates per 100 (as used in the example text below) are easily extracted from the review SoF table – see page 27.
- Report and interpret the units used for continuous outcomes (e.g. a VAS scale of 0-10 where 0 is pain-free and 10 is unbearable pain)
- For more detailed information on the standards for PLS go to: Standards for the reporting of Plain language summaries in new Cochrane Intervention Reviews 2013.
- New PLS guidance is under development through Cochrane's Plain Language Summaries pilot project – please see an example of the new structure here; contact Helen Nagels or Elena Kostova for further information (h.nagels@auckland.ac.nz; e.b.kostova@amsterdamumc.nl; cochrane.MDSG@auckland.ac.nz).

Example text:

Title
Treatment A versus treatment B for women undergoing assisted reproductive technology (ART)

Review question
Cochrane authors reviewed the evidence about the effect of Treatment A versus Treatment B in women undergoing ART.

Background
Treatment B is commonly used to increase the chance of live birth in women undergoing ART. However, it is known to increase multiple pregnancy rates, which can cause serious health risks for both mother and baby. Treatment A is an alternative approach which may reduce the risk of multiple pregnancy. We compared the benefits and risks of the two treatments.

Study characteristics
We found four randomised controlled trials comparing Treatment A with Treatment B in a total of 811 women undergoing ART. The evidence is current to June 20XX.

Key results
Only one trial comparing Treatment A with Treatment B was well designed and was included in the analysis for live birth. This study did not provide enough evidence to show whether there is a difference in the chance of live birth; the quality of the evidence was low.
Two well designed studies were included in the analysis for multiple pregnancy. This showed that Treatment A compared to Treatment B may reduce the risk of multiple pregnancy in women undergoing ART. Data were lacking on other adverse effects.

The evidence suggests that if the chance of live birth following Treatment B is assumed to be 34%, then the chance following Treatment A would be 27% to 55%. It also suggests that if the chance of multiple pregnancy following Treatment B is 13%, then the chance following Treatment A would be 0% to 3%.

Evidence on other adverse events was poorly reported and inconclusive.

Quality of the evidence

There remains uncertainty about whether Treatment A compared to Treatment B increases the chance of having a baby, but it may reduce the risk of multiple pregnancy in women undergoing ART. The certainty of the evidence was assessed as low. The reason for this is that the studies included in this review were not very well designed and did not recruit a large enough number of women to provide meaningful results. This means that results must be treated cautiously, and further studies are needed to confirm findings.
Part D – Methods

Criteria for considering studies for this review

KEY POINTS

- Usually, all randomised trial designs should be included though quasi-RCTs should not be included. You may also wish to include:
 - Crossover trials - This type of RCT may or may not be appropriate for inclusion and these can be dealt with in 3 ways:
 - Crossover trials will be excluded, as the design is not valid in this context. For example, crossovers are not valid for long term outcomes in women undergoing HRT.
 - Crossover trials will be included but only data from the first phase will be included in meta-analyses, as the crossover is not a valid design in this context. For example, crossovers cannot be used in full in fertility research where the primary outcome is live birth.
 - Crossover trials will be included, as the crossover is a valid design in this context. For example, cross overs are a valid design for chronic stable conditions where the research is assessing short term outcomes such as dysmenorrhoea.
 - Cluster-randomised trials - There is no reason to exclude cluster-randomised trials. However, these type of RCT’s are unlikely to have been performed in this research area. If the review includes interventions randomised by clinic rather than individuals, then these are likely to be included. Please address this in the Unit of analysis issues and Data synthesis sections.

Example text:

Types of studies

Randomised controlled trials (RCTs) will be included. Quasi-RCTs will not be included. Crossover trials will be included but only data from the first phase will be included in meta-analyses, as the crossover is not a valid design in this context.

Types of participants

Women/couples with unexplained infertility will be eligible for inclusion.

- Definitions of the condition (e.g. unexplained infertility) belong in the Background section but diagnostic criteria maybe included if appropriate

Types of interventions

Trials comparing Factor X via any route versus any other active intervention or placebo will be included.

- Consider if the intervention is used alone or in combination with other intervention(s).
Types of outcome measures

KEY POINTS

- The primary outcomes should normally include one measure of effectiveness (e.g. live birth) and one of potential harm (e.g. multiple pregnancy).
- You can combine ongoing pregnancy data with live birth data in one primary outcome live birth/ongoing pregnancy only if ongoing pregnancy is directly reported in the trial (not by calculating it from clinical pregnancy). In the absence of live birth data, you should report ongoing pregnancy separately.
- For infertility and endometriosis reviews, we encourage you to use the core outcome set for infertility/endometriosis – refer to page 21 for the full list with definitions.
- Try to limit to the most relevant outcomes as only seven outcomes (max) will be included in the summary of findings table which should be listed in the section ‘Summary of findings and assessment of the [quality/certainty] of the evidence’.
- Number outcomes as in the example above and use the same numbers in the Effects of interventions.
- Keep secondary outcomes to a minimum. Focus on clinical outcomes and try to avoid lab outcomes (e.g. implantation rate).
- Define in advance details of what are acceptable outcome measures (e.g. differing definitions, assessors, scales, time-points) and state a preference order when there are several possible measures.

Example text:

Primary outcomes
1. Live birth or ongoing pregnancy
 - Live birth is defined as delivery of a live fetus after 20 completed weeks of gestation
 - Ongoing pregnancy is defined as evidence of a gestational sac with fetal heart motion at 12 weeks, confirmed with ultrasound.
2. Multiple pregnancy

Secondary outcomes
3. Clinical pregnancy, defined as evidence of a gestational sac, confirmed by ultrasound.
4. Any adverse event (including miscarriage, bleeding, drug reactions), reported either as a composite measure or separately.
5. Quality of life. If studies report more than one scale, preference will be given to the SF-36, then other validated generic scales, and finally condition-specific scales.

Search methods for identification of studies

KEY POINTS

- The Gynaecology and Fertility Information Specialist (IS) (Marian Showell) will help design your search and will run a search in the electronic databases listed under (1) above. It is the responsibility of the review authors to run, document and date (with day, month, and
year) the searches of other sources (i.e. those listed under (2) and (3) above, as appropriate).

- Please note that http://www.clinicaltrials.gov and http://ictrptest.azurewebsites.net/Default.aspx (the World Health Organisation International Trials Registry Platform search portal) are now indexed in CENTRAL with 1-month delay. Authors can search these databases if they wish to cover the 1-month lag, but this is not mandatory.

- As from July 2020 CINAHL records are automatically downloaded to CENTRAL so the IS no longer searches CINAHL as an individual database.

- Review authors MUST search reference lists of articles retrieved and contact experts in the field in order to obtain any additional studies.

- Reviews of Traditional Chinese Medicine or Chinese complementary therapies must search at least one Chinese database.

- Epistemonikos database is a good source of systematic reviews, for reference checking.

- Liaise with the CGF Information Specialist to avoid duplication of handsearching and for other advice on searching.

- List all sources searched in the Methods section of the review (as in the example above).

- The search process should be summarised in a PRISMA flow diagram in the full review.

- Full search strategies for all sources searched (including those for Other electronic sources of trials) must be copied and pasted into the appendices (not in the body of the text) of the review along with dates and the platforms used for each database.

- The MEDLINE, Embase, PsycINFO, and AMED searches are on the OVID platform, CENTRAL is now searched via CRS ONLINE via the Web.

- In the protocol the numbers of hits per search line (i.e. the numbers in brackets after the keywords) are removed from the strategies, however at the review stage the numbers of hits per keyword remain.

- It is mandatory to run/update searches for all relevant databases no more than six months (maximum 12 months) before publication of the full review.

- Ideally any new studies should be fully incorporated. As a minimum, potentially eligible studies should be referenced under “awaiting classification” or “ongoing”, but authors have to show that they are waiting for information from trial authors.

- References for this section:
Example text:

We will search for all published and unpublished RCTs of XX, without language restriction, in consultation with the Gynaecology and Fertility Group (CGF) Information Specialist.

Electronic searches

(1) We will search the following electronic databases for relevant trials:

1. The Cochrane Gynaecology and Fertility Group (CGF) Specialised Register of Controlled Trials, PROCITE platform (from inception onwards)
2. CENTRAL (now containing output from two trials registers and CINAHL), via the Cochrane Register of Studies Online (CRSO), Web platform searched from inception onwards;
3. MEDLINE (Epub Ahead of Print, In-Process & Other Non-Indexed Citations), Ovid platform, searched from 1946 to present;
4. Embase, Ovid platform, searched from 1980 to present;
5. PsycINFO, Ovid platform searched from 1806 to present;
6. AMED, Ovid platform, searched from 1985 to present (for any complementary therapy review topics).

The MEDLINE search will be combined with the Cochrane highly sensitive search strategy for identifying randomised trials which appears in the Cochrane Handbook of Systematic Reviews of Interventions (Version 6.2 chapter 4, 4.4.7; 4.S1). The Embase search is combined with trial filters developed by the Scottish Intercollegiate Guidelines Network (SIGN) (https://www.sign.ac.uk/what-we-do/methodology/search-filters/).

(2) Other electronic sources of trials may include:

1. LILACS and other Spanish and Portuguese language databases (Latin American and Caribbean Health Science Information database, Web platform, searched from 1982 to present; found in the Virtual Health Library Regional Portal (VHL) http://pesquisa.bvsalud.org/portal/ (the right-hand drop-down box allows you to filter out MEDLINE records)
2. Google Scholar, Web platform (for recent trials not yet indexed in the major databases) [The searches above will be simple short keyword searches and only checking the top few hits]
3. Epistemonikos database https://www.epistemonikos.org/, a multilingual database of health evidence, Web platform (the largest source of systematic reviews and also other scientific evidence).

Searching other resources

(3) We will handsearch reference lists of relevant trials and systematic reviews retrieved by the search and contact experts in the field to obtain any additional trials. We will also handsearch relevant journals and conference abstracts that are not covered in the CGF register, in liaison with the Information Specialist.
Data collection and analysis

There should not be any text under this heading.

Selection of studies
At least two of the review authors (from XX, YY and ZZ) independently reviewed titles and abstracts of trials for eligibility and obtained the full texts of all potentially eligible studies. Two review authors (XX and YY) independently examined these full text articles for compliance with the inclusion criteria and selected eligible studies. We corresponded with study investigators as required, to clarify study eligibility. Disagreements were resolved by discussion in the first instance, followed by consultation with a third review author (ZZ) if required. We documented the selection process with a PRISMA flow chart.

Data extraction and management

KEY POINTS

- Data are often presented in a non-standardised format. Studies should be included irrespective of whether outcomes are reported in a “usable” way. In multi-arm studies, data from arms that do not meet eligibility criteria should be excluded.

Example text:
Two of the review authors (XX with YY or ZZ) independently extracted data from the included studies using a data extraction form. Any disagreements were resolved by discussion or by consultation with a third review author who was not involved in data extraction for that particular study. Data extracted includes study characteristics and outcome data (see data extraction table for details, Appendix XX). Where studies have multiple publications, we collated multiple reports of the same under a single study ID with multiple references. We corresponded with study investigators for further data on methods and/or results, as required.

Assessment of risk of bias in included studies

KEY POINTS

- For review updates authors should continue to use RoB 1, read section 8.5 of the 2011 Cochrane Handbook for detailed guidance on assessing each type of bias. If you wish to use RoB 2 for your update, contact Helen Nagels or Elena Kostova (h.nagels@auckland.ac.nz; e.b.kostova@amsterdamumc.nl) at editorial base to discuss.
- If likely sources of “other bias” can be identified in advance, these should be specified in this section and the number of domains increased accordingly.
- Assessment of risk of bias involves considering the potential impact of each domain in the context of individual studies (or individual outcomes). For example, lack of blinding in RoB 1 may not increase the risk of bias if follow-up is complete and outcomes are unequivocal (e.g. live birth).
Selective reporting in RoB 1 is a type of reporting bias that affects the internal validity of an individual study. It refers to the selective reporting of some outcomes (e.g. positive outcomes) and the failure to report others (e.g. adverse events). Trialists should report all pre-stated outcomes, which should include all outcomes that you would expect, such as adverse events. Reporting in a paper what they say they will report in the methods section of the same paper is not sufficient to get a low risk rating. If a study has no separate published protocol, you can use the information from clinical trial registration (e.g. clinicaltrials.gov or the WHO portal). Otherwise, unless trial authors confirm relevant detail, this will generally be unclear risk.

Reference when using RoB 1:

Example text:
Two of the review authors (XX and YY) independently assessed the included studies for risk of bias using the Cochrane risk of bias assessment tool (Higgins 2011) to assess: selection (random sequence generation and allocation concealment); performance (blinding of participants and personnel); detection (blinding of outcome assessors); attrition (incomplete outcome data); reporting (selective reporting); and other bias. Judgements were assigned as recommended in the Cochrane Handbook Section 8.5 (Higgins 2011). Disagreements were resolved by discussion or consultation with a third review author as required. All judgements and conclusions are presented in the risk of bias table and incorporated into the interpretation of the review findings by means of sensitivity analyses (see below). With respect to within-trial selective reporting, where identified studies fail to report the primary outcome of live birth, but do report interim outcomes such as pregnancy, we planned to assess whether the interim values are similar to those reported in studies that also report live birth.

Measures of treatment effect

KEY POINTS

- There are three available statistics to analyse binary (dichotomous) outcomes - the odds ratio, risk ratio and risk difference. The odds ratio further divides into the Mantel-Haenszel and Peto estimates. Any analysis compatible with the Cochrane Handbook (see Chapter 6) is acceptable although it is rarely appropriate to use a risk difference. We recommend use of the odds ratio (Mantel-Haenszel by default, Peto if events are very rare) because of its superior mathematical properties. Whichever statistic you use, we encourage ‘translation’ of the result to actual percentages for a typical population to maximise understanding. You will find examples of this in Parts B, C and E.
- Only include information relevant to the review (e.g. many fertility reviews contain only binary outcomes, so you do not need to provide for continuous outcomes.)
Example text:

For dichotomous data (e.g. live birth rates), we took the numbers of events in the control and intervention groups of each study to calculate Mantel-Haenszel odds ratios (ORs). Mean difference (MDs) between treatment groups were calculated for continuous data (e.g. quality of life) where all studies reported the outcome in the same way. If similar outcomes had been reported on different scales (e.g. quality of life) we planned to calculate the standardised mean difference (SMD). We planned to reverse the direction of effect of individual studies, if required, to ensure consistency across trials. We planned to treat ordinal data (e.g. quality of life scores) as continuous data. We presented 95% confidence intervals (CIs) for all outcomes. Where data to calculate ORs or MDs were not available, we utilised the most detailed numerical data available. For example, if dichotomous data supplies percentages with sample numbers, we used this to calculate OR's; for continuous data, if alternate measurement of error (e.g. test statistics, p values) were supplied we used these to calculate CIs.

Unit of analysis issues

KEY POINTS

- Report all outcomes per randomised woman, as this is the unit of randomisation. Rates per clinical pregnancy may be used as the denominator for a sensitivity analysis, as this will help give the full picture.
- If studies report only “per cycle” data, contact authors and request “per woman” data.
- Some outcomes can only occur in women who reach clinical pregnancy (e.g. multiple pregnancy, miscarriage, etc).
- If including crossover or cluster randomised trials. Both of these need to have been analysed correctly to take into account the patient correlations.

Example text:

The primary analysis was per woman randomised; we included per pregnancy data for some outcomes (e.g. miscarriage). Data that did not allow valid analysis (e.g. "per cycle" data) were briefly summarised in an additional table and were not meta-analysed. We counted multiple births as one live birth event. Only first-phase data from crossover trials was included. [OR: Statistical advice was sought regarding the analysis of crossover trials, to facilitate the appropriate inclusion of crossover data in meta-analysis and say what you done].
Dealing with missing data

KEY POINTS

• For fertility reviews it is reasonable to assume missing participants did not have the outcome of interest (e.g. when data is missing on participants for the outcome of live birth, we assume they did not have a live birth).
• For other topics where the main outcomes are not pregnancy related, we suggest you only report data for participants on which measurements have been taken. It is not advised that you impute data for these.
• If measurement of error data is unavailable it is acceptable to impute SD’s from other included studies, please see text below.

Example text:

We analysed the data using an intention-to-treat basis as far as possible (i.e. including all randomised participants in analysis, in the groups to which they were randomised). We attempted to obtain missing data from the original trialists. Where these were unobtainable, we undertook imputation of individual values for the primary outcome of live birth only. Live birth was assumed not to have occurred in participants without a reported outcome. For other outcomes, we analysed only the available data. We planned that any imputation undertaken would be subjected to sensitivity analysis (see Sensitivity analysis).

When studies reported sufficient detail to calculate MDs but no information on associated standard deviation (SD), we assumed the outcome to have a standard deviation equal to the highest SD from other studies within the same analysis.

Assessment of heterogeneity

We considered whether the clinical and methodological characteristics of the included studies were sufficiently similar for meta-analysis to provide a clinically meaningful summary. We assessed statistical heterogeneity by the measure of the I^2. An I^2 measurement greater than 50% was taken to indicate substantial heterogeneity (Deeks 2021).

Assessment of reporting biases

KEY POINTS

• This section on reporting biases refers to review-wide reporting bias (e.g. publication bias, multiple publication bias, language bias etc), whereby the dissemination of research findings is influenced by the nature and direction of results, reducing the likelihood that all studies eligible for a review will be retrieved.
Example text:

In view of the difficulty of detecting and correcting for publication bias and other reporting biases, we aimed to minimise their potential impact by ensuring a comprehensive search for eligible studies and by being alert for duplication of data. If there are ten or more studies in an analysis, we planned to use a funnel plot to explore the possibility of small study effects (a tendency for estimates of the intervention effect to be more beneficial in smaller studies).

Data synthesis

KEY POINTS

- Statistical analysis will be performed using Review Manager 5.4.1 ([RevMan 2020](#)) or Review Manager Web ([RevMan Web](#)).
- Analyses need to be defined by comparison and outcome. Studies should be grouped where the participants and interventions/comparisons are similar enough to be combined in order to answer the review objectives.
- You need to prespecify which model (i.e. random or fixed effect) will be used to underpin the meta-analysis. Fixed effect is the most common model if studies are expected to be similar in the participants and interventions. A random effects model should be chosen if participants are likely to be very different or interventions very heterogeneous.
- If analyses are subgrouped (as in the example text below), state whether it is planned to pool the subgroups (see Subgroup analysis and investigation of heterogeneity section).
- If the odds of an outcome (beneficial e.g. live birth or detrimental e.g. adverse effects) increase with the intervention it will be displayed graphically in the meta-analyses to the right of the centreline. If the odds of an outcome decrease with the intervention, it will be displayed on the left of the centreline.
- We now encourage authors to restrict the primary analyses to studies judged to be at low risk of bias. Authors can choose to use either low risk of selection bias or low risk of bias on any domain.
- Three different strategies for data synthesis are presented below.

Strategies for Data Synthesis

When risk of bias varies across studies in a meta-analysis, the Cochrane Handbook sets out broad strategies to incorporate these assessments into the analysis (see section 7.6.2). The strategy you choose will influence how you present your main findings for a particular outcome. The choice between strategies (1, 2 or 3) should be based to a large extent on the balance between the potential for bias and the loss of precision when studies at higher risk of bias are excluded. This choice must be prespecified in the protocol (or stated in the Differences between protocol and review section) and have the agreement of the editorial base.

The main strategy options are:

1. **Primary analyses restricted to studies at low risk bias (preferred option)**
 - We recommend this strategy for all CGF reviews.
Restrict the primary analyses to studies judged to be at low risk of bias. Authors will need to define whether specific or all domains must be at low risk. Review authors who restrict their primary analyses in this way are encouraged to perform sensitivity analyses to show how conclusions might be affected if studies with high and unclear risk of bias were included.

- It may be reasonable to present the sensitivity analyses in the abstract, PLS and SoFs in this instance.
- This stratification should apply to all outcomes within the review.

2. **Present multiple (stratified) analyses**
 - Stratifying according to the risk of bias in predetermined domains will produce multiple estimates of the intervention effect: one based on all studies, one based on studies at low risk of bias, and one based on studies at unclear/high risk of bias.
 - This stratification should apply to all outcomes within the review. All stratified groups should be presented in the Effects of the interventions, abstract, SoFs and PLS.

3. **Present all studies in primary analyses**
 - Historically this strategy has been the most commonly used in past CGF reviews. If using this option, it is mandatory to conduct sensitivity analyses for the primary outcomes removing studies judged to high and unclear risk of selection bias.
 - Sensitivity analyses should only be presented in the Effects of the interventions, not in the abstract, PLS or SoFs.

Example text for strategy 1:

We will present the primary analysis including trials to be judged at [low risk of selection bias/ low risk of bias on all domains](choose one).

If the studies are sufficiently similar, we will combine the data using a [fixed effect/random effects](choose one) model in the following comparisons:

1. Factor X versus placebo, (subgrouped by dose or mode of administration if appropriate [see Subgroup analysis section]). We plan to pool the data for the included studies.
2. Factor X versus Factor G
3. Factor X versus Factor H

Example text for strategy 2:

We will present the primary analysis stratified by the risk of bias with trials judged to be at low risk, unclear or high risk of bias presented separately but also combined to give an overall total including all studies.

If the studies are sufficiently similar, we will combine the data using a [fixed effect/random effects](choose one) model in the following comparisons:

1. Factor X versus placebo, (subgrouped by dose or mode of administration if appropriate [see Subgroup analysis section]). We plan to pool the data for the included studies.
2. Factor X versus Factor G
3. Factor X versus Factor H
Example text for strategy 3:
If the studies are sufficiently similar, we will combine the data using a [fixed effect/random effects (choose one)] model in the following comparisons:

1. Factor X versus placebo, (subgrouped by dose or mode of administration if appropriate [see Subgroup analysis section]. We plan to pool the data for the included studies.
2. Factor X versus Factor G
3. Factor X versus Factor H

Subgroup analysis and investigation of heterogeneity

KEY POINTS

- Keep subgroups to an absolute minimum.
- Subgroups can be defined either by characteristics of the study or by those of the participants. In practice, the latter are unlikely to be available in reported data. Subgroups should be explicit and few. Preferably the rationale for each will be clear from the Background section. If not, it must be explained here.
- If subgroups are to be compared, this should be done with a formal statistical test. Interpretation of the statistical analysis for subgroups is problematic.
- Subgroup analysis should be performed on the primary analysis for each outcome. For instance, if the review team has restricted the primary analysis to studies at low risk of bias, then subgroup analysis should only be performed among these studies.

Example text:
To determine whether findings differed in studies, we planned to perform the following subgroup analyses for the primary effectiveness outcome if substantial heterogeneity existed (I^2 statistic value > 50%) and if enough data were available.

- Studies with low dose versus studies of high dose: benefit from treatment may vary depending on dosage received.
- Including only women with a high BMI (> 32kg/m2): benefit from treatment may vary in this group compared to those with a lower BMI.

Sensitivity analysis

KEY POINTS

- Investigating whether the conclusions are robust is of utmost importance.
- If authors chose to present all studies in the primary analyses, then they should perform sensitivity analyses restricting inclusion to studies at low risk of selection bias for outcomes as prespecified and report this in the Effects of the interventions.
- If authors chose to restrict the studies presented in primary analyses to those at low risk of bias, then their sensitivity analysis should include all studies regardless of risk of bias.
Example text:

Sensitivity analyses was conducted on all outcomes to determine whether the conclusions were robust to arbitrary decisions we made regarding eligibility and analysis. These analyses included consideration of whether the review conclusions would have differed if:

1. We included all studies in the analysis (i.e. no restriction to studies considered to be at low risk of selection bias).
2. A [fixed effect/random effects (delete one)] model had been adopted.
3. Alternative imputation strategies had been implemented.
4. The summary effect measure had been odds ratio rather than relative risk.

Summary of findings and assessment of the [quality/certainty] of the evidence

KEY POINTS

• SoF tables will appear at the front of the published review.
• Additional SoFs can be prepared for other important comparisons (those reported in full in the abstract) but it is not essential to have SoFs for every comparison.
• Include a maximum of seven outcomes in each SoF table i.e. the main outcomes which include your primary outcomes and all other outcomes unless there are more than seven in which case please prespecify which secondary outcomes will be included.
• You must include the same outcomes for each comparison.
• The same comparisons and outcomes should be reported in the abstract and PLS as in the SoF tables.
• The outcomes in SoF tables will be those in primary analyses prespecified using one of the three options presented in the Data synthesis section.
 o If using strategy 1 authors can consider including the sensitivity analyses (including all studies) in the SoFs.
 o If using strategy 2 or 3 authors should only include the primary analyses in the SoFs. Sensitivity analyses can be presented in narrative in the Effects of the interventions.
• For examples of how to grade evidence see the Cochrane Handbook Chapter 14.2 and How to grade.
• References for this section:
Example text:
We prepared summary of findings tables using GRADEpro and Cochrane methods (Schünemann 2021; GRADEpro GDT 2015). These tables evaluate the overall [quality/certainty] of the body of evidence for the main review outcomes (live birth, ongoing pregnancy, multiple pregnancy, OHSS) for the main review comparison (Treatment A versus Treatment B). Additional summary of findings tables were also prepared for other important comparisons (Treatment A versus placebo, and Treatment B versus Treatment C). We assessed the [quality/certainty] of the evidence using GRADE criteria: risk of bias, consistency of effect, imprecision, indirectness, and publication bias). Judgements about evidence [quality/certainty] (high, moderate, low or very low) were made by at least two review authors (XX with YY and ZZ) working independently, and disagreements were resolved by discussion. All judgements are justified, documented, and incorporated into the reporting of results for each outcome.

Core outcome sets and definitions
CGF strongly encourages the use of the core outcome sets below for infertility and endometriosis reviews.

Embedding the core outcome sets within RCTs and systematic reviews should ensure the comprehensive selection, collection and reporting of core outcomes. The generic reporting tables below should provide clear guidance to researchers and improve the reporting of their results.

Core outcomes for endometriosis (endo:outcomes)

A core outcome set for future endometriosis research

<table>
<thead>
<tr>
<th>Trials evaluating treatments for pain and other symptoms associated with endometriosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall pain</td>
</tr>
<tr>
<td>Improvement in most troublesome symptom</td>
</tr>
<tr>
<td>Quality of life</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trials evaluating treatments for infertility associated with endometriosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viable intrauterine pregnancy confirmed by ultrasound</td>
</tr>
<tr>
<td>Pregnancy loss</td>
</tr>
<tr>
<td>Live birth</td>
</tr>
<tr>
<td>Time to pregnancy leading to live birth</td>
</tr>
<tr>
<td>Gestational age at delivery</td>
</tr>
<tr>
<td>Birthweight</td>
</tr>
<tr>
<td>Neonatal mortality</td>
</tr>
<tr>
<td>Major congenital abnormalities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse events</td>
</tr>
<tr>
<td>Patient satisfaction with treatment</td>
</tr>
</tbody>
</table>

*see definitions for infertility outcomes in the previous table ‘A core outcome set and standardised definitions for future infertility research’
Core outcomes for infertility trials (COMMIT)

A core outcome set and standardised definitions for future infertility research

<table>
<thead>
<tr>
<th>Viable intrauterine pregnancy confirmed by ultrasound</th>
<th>Researchers should report at which gestation the ultrasound examination was performed.</th>
<th>Researchers should report at which gestation the ultrasound examination was performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pregnancy diagnosed by ultrasonographic examination of at least one fetus with a discernible heartbeat.</td>
<td>Pregnancies are counted as pregnancy events, for example, a twin pregnancy is counted as one pregnancy event.</td>
<td>Pregnancies are counted as pregnancy events, for example, a twin pregnancy is counted as one pregnancy event.</td>
</tr>
<tr>
<td>Pregnancy loss</td>
<td>Effect size estimates and 95% confidence interval should be reported for pregnancy events. The denominator should be per participant randomized.</td>
<td>Effect size estimates and 95% confidence interval should be reported for pregnancy events. The denominator should be per participant randomized.</td>
</tr>
<tr>
<td>Ectopic pregnancy</td>
<td>Singleton, twin and higher multiple pregnancy should be reported separately.</td>
<td>Singleton, twin and higher multiple pregnancy should be reported separately.</td>
</tr>
<tr>
<td>A pregnancy outside the uterine cavity, diagnosed by ultrasound, surgical visualization or histopathology.</td>
<td>When considering twin and higher multiple pregnancies, pregnancy loss should be explicitly accounted for.</td>
<td>When considering twin and higher multiple pregnancies, pregnancy loss should be explicitly accounted for.</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>Miscarriage should be reported after a viable pregnancy has been confirmed by ultrasound.</td>
<td>Miscarriage should be reported after a viable pregnancy has been confirmed by ultrasound.</td>
</tr>
<tr>
<td>The spontaneous loss of an intrauterine pregnancy prior to 20 completed weeks of gestational age.</td>
<td>When considering stillbirth involving twins and higher multiple births they should be reported as a single event.</td>
<td>When considering stillbirth involving twins and higher multiple births they should be reported as a single event.</td>
</tr>
<tr>
<td>Stillbirth</td>
<td></td>
<td>When considering stillbirth involving twins and higher multiple births they should be reported as a single event.</td>
</tr>
<tr>
<td>The death of a fetus prior to the complete expulsion or extraction from its mother after 20 completed weeks of gestational age. The death is determined by the fact that, after such separation, the fetus does not breathe or show any other evidence of life, such as heartbeat, umbilical cord pulsation or definite movement of voluntary muscles.</td>
<td>Selective embryo or fetal reduction should be reported.</td>
<td>Selective embryo or fetal reduction should be reported.</td>
</tr>
<tr>
<td>Termination of pregnancy</td>
<td>Live births are counted as birth events, for example, twin live birth is counted as one live birth event.</td>
<td>Live births are counted as birth events, for example, twin live birth is counted as one live birth event.</td>
</tr>
<tr>
<td>Intentional loss of an intrauterine pregnancy, through intervention by medical, surgical or unspecified means.</td>
<td>Effect size estimates and 95% confidence interval should be reported for live birth events. The denominator should be per participant randomized.</td>
<td>Effect size estimates and 95% confidence interval should be reported for live birth events. The denominator should be per participant randomized.</td>
</tr>
<tr>
<td>Live birth</td>
<td></td>
<td>Effect size estimates and 95% confidence interval should be reported for live birth events. The denominator should be per participant randomized.</td>
</tr>
<tr>
<td>The complete expulsion or extraction from a woman of a product of fertilization, after 20 completed weeks of gestational age; which, after such separation, breathes or shows any other evidence of life, such as heartbeat, umbilical cord pulsation or definite movement of voluntary muscles.</td>
<td></td>
<td>Effect size estimates and 95% confidence interval should be reported for live birth events. The denominator should be per participant randomized.</td>
</tr>
<tr>
<td>Gestational age at birth</td>
<td>The age of a fetus is calculated by the best obstetric estimate determined by assessments which may include early ultrasound, and the date of the last menstrual period, and/or perinatal details. In the case of assisted reproductive techniques, it is calculated by adding 14 days to the number of completed weeks since fertilization.</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Birthweight</td>
<td>Birth weight should be collected within 24 h of birth and assessed using a calibrated electronic scale with 10-g resolution.</td>
<td></td>
</tr>
<tr>
<td>Neonatal mortality</td>
<td>Death of a live born baby within 28 days of birth. This can be sub-divided into early neonatal mortality, if death occurs in the first 7 days after birth and late neonatal, if death occurs between 8 and 28 days after birth.</td>
<td></td>
</tr>
<tr>
<td>Major congenital anomaly</td>
<td>Structural, functional and genetic anomalies, that occur during pregnancy, and identified antenatally, at birth, or later in life, and require surgical repair of a defect, or are visually evident, or are life-threatening, or cause death.</td>
<td></td>
</tr>
</tbody>
</table>

When applicable – Time to pregnancy leading to live birth

- Singletons, twin and higher multiple births should be reported separately.
- The gestational age of both live births and stillbirths should be reported.
- Gestational age at birth should be reported as a median and interquartile range. Reporting the mean and standard deviation in addition would support future meta-analysis.
- The birthweight of singletons, twins and higher multiples should be reported separately.
- Birthweight for each newborn infant of the multiple birth set should be reported.
- Birthweight should not be adjusted for gestational age.
- The birthweight of stillbirths should be reported.
- Mortality related to preterm infants should be collected up to 28 days beyond their estimated due date.
- If a member of a multiple birth set dies in the neonatal period this should be explicitly reported.
- Major congenital anomalies should be classified using a standardized taxonomy.
- Major congenital anomaly should be reported as an infant with at least one major congenital anomaly detected.
- If a major congenital anomaly is identified in a member of a multiple set this should be explicitly reported.
- Detailed guidance regarding the collection, analysis and reporting of time to pregnancy leading to live birth was approved by the meeting participants (see supplementary data file).
References for COMMIT and endo:outcomes:

Related social media platforms:

- https://twitter.com/EndoOutcomes
- https://twitter.com/FertilityTop10
- https://twitter.com/CoreOutcomes
Part E – Results

Example text:

Description of studies
No text should appear directly under this heading

Results of the search
The search retrieved 97 articles. Eleven studies (13 articles) were potentially eligible and were retrieved in full text. Four studies (five articles) met our inclusion criteria. We excluded five studies and two are ongoing. See study tables: Characteristics of included studies, Characteristics of excluded studies, Characteristics of studies awaiting classification.

Included studies
- Insert four subheadings (as below) and briefly summarise important points. Include full details of individual studies in Characteristics of included studies table (not this section).

Study design and setting
Four parallel design randomised controlled trials (RCTs) were included. All were multicentre studies conducted in ART clinics in the Netherlands or the UK.

Participants
The studies included 811 infertile women undergoing ART. Their mean age ranged across studies from 32 to 37 years.

Interventions
All four studies compared Treatment A with Treatment B

Outcomes
All four studies reported live birth and multiple pregnancy
All four studies also reported other adverse effects, but none included data suitable for analysis

Excluded studies
Five studies were excluded from the review, for the following reasons:
- 3/5 were not RCTs
- 2/5 did not compare Treatment A versus Treatment B
 - Only studies that initially appeared eligible should be listed as excluded studies (i.e. if you had to read the full-text publication in order to determine that it was ineligible).

Risk of bias in included studies

KEY POINTS

- Do not include funding source, power calculations or ethics approval in this section, as they do not affect internal validity. These issues should be reported in the Characteristics of Included Studies table. If issues such as funding are of concern, they can be reported in
the Results section (Description of studies), and the Discussion section (Quality of the evidence).

- Consider the degree to which blinding is likely to influence specific outcomes.
- For examples on criteria for judging risk of bias in all domains, see Criteria for judging risk of bias in the ‘Risk of bias’ assessment tool.

Example text:

Allocation (selection bias)

Sequence generation

Two studies were rated as at low risk of selection bias related to sequence generation, as they used computer randomisation or a random numbers table. The other two studies did not describe the method used and were rated as at unclear risk of this bias.

Allocation concealment

Two studies were rated as at low risk of selection bias related to allocation concealment as they used sequentially labelled, sealed, opaque envelopes. The other two studies failed to describe methods of allocation concealment and we rated these as at unclear risk of bias for this domain.

Blinding (performance and detection bias)

Blinding of participants and personnel (performance)

We did not consider that blinding of participants and personnel was likely to influence findings for the primary review outcomes (live birth and multiple pregnancy). Blinding might influence outcomes for other adverse events, but no studies reported relevant data for this outcome.

Blinding of outcome assessors (detection)

We did not consider blinding of outcome assessors likely to influence the primary review outcomes (live birth and multiple pregnancy). Blinding might influence outcomes for other adverse events as these could be observer-reported outcome measures, but no studies reported relevant data for this outcome.

Incomplete outcome data (attrition bias)

All four studies analysed all or most (>95%) of the women randomised and we judged them to be at low risk of attrition bias.

Selective reporting (reporting bias)

We rated all four studies as at low risk of selective reporting bias. All outcomes planned in the protocols were reported and these included live birth and multiple pregnancy (i.e. the most clinically relevant outcomes).

We rated xx studies as at unclear risk of bias although they reported our review’s primary outcomes; we could not obtain a study protocol and the study was not prospectively registered so there was no information we could use to verify study details.
Other potential sources of bias (other bias)
In one study there was a statistically significant baseline difference in age between the two groups and the risk of bias was deemed unclear. We found no potential sources of within-study bias in the other three studies.

Characteristics of included studies tables
- Participants: include here the numbers randomised to each intervention and control group.
- Use the Notes section to record the following: clinical trial registration number – check this was prospective registration; study dates; funding; conflicts of interest; whether trial authors were contacted for missing information relating to data, RoB, etc. as necessary.

Effects of interventions

KEY POINTS: HOW TO FORMAT YOUR RESULTS

- Include all pre-specified comparisons and outcomes: if there are no relevant data, say so. A finding of no evidence is in itself an important finding and can form the basis of the Implications for research section.
- Use the same order of comparisons and outcomes (separating primary and secondary outcomes) and numbering system as in the Methods section and data tables.
- Present results using the prespecified analysis strategy chosen from the three options in the methods section.
- Use this format for presenting results: (RR 0.89, 95% CI 0.75 to 1.05, I² = 31%, 3 RCTs, 811 women; low-quality evidence; Analysis 1.1).
- Report and interpret the units used for continuous outcomes (e.g. a VAS scale of 0-10 where 0 is pain-free and 10 is unbearable pain): report this in the abstract, main text and the comment's section of the SoF table.
- Do not confuse lack of evidence of an effect with evidence of a lack of effect: say something like “There was insufficient evidence to determine whether there was a difference” not “There was no significant difference”.
- As "no evidence of a difference" may imply equivalence, we do not use this unless the evidence does indeed suggest equivalence.
- Consider clinical rather than statistical significance.
- If there are multi-arm studies, avoid double-counting of controls.
- Do not describe the results of individual studies unless there is only one study in the comparison.
- If presenting multiple sensitivity analyses or different ways of subgrouping the same studies, present these in summary form (e.g. a single Table or Figure) and not in multiple forest plots.
- Report all pre-specified sensitivity and subgroup analyses at the end of each comparison. If there were too few studies to conduct the analyses, state this.
- Interpret subgroups very cautiously. In general, do not report them in the abstract.
- Report any post-hoc analyses at the end of each comparison, noting that they were not pre-specified and that they require extra caution in interpretation.
• Report the results of funnel plots e.g. “Funnel plots for the primary outcomes (live birth and ongoing pregnancy) did not suggest reporting bias”.
• If there were too few studies to construct a funnel plot, state this in the results section.
• Acknowledge any substantial statistical heterogeneity detected and explore it (e.g. by means of subgroup analyses).
• Translate the effect estimates for important clinical outcomes in a user-friendly way. We suggest using percentages (as in the example below), derived from the SoF table.

Example: summary of findings table highlighting how to derive the percentages

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assumed risk (control)</th>
<th>Corresponding risk (intervention)</th>
<th>Relative effect</th>
<th>No of participants (studies)</th>
<th>Quality of evidence</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical pregnancy</td>
<td>349 per 1000</td>
<td>360 per 1000 (287 to 442)</td>
<td>OR 1.05 (0.75 to 1.48)</td>
<td>602 (4 studies)</td>
<td>⊕⊕⊕⊝</td>
<td>moderate</td>
</tr>
</tbody>
</table>

• Using the numbers in the ‘assumed’ and ‘corresponding’ risks columns of the SoFs, convert into a percentage and round up e.g. 349 becomes 35%, and 287 to 442 becomes 29% to 44%.
• The translation for this would be: “This suggests that in women with a 35% chance of clinical pregnancy using monitoring with TVUS plus serum oestradiol, the clinical pregnancy rate in women using TVUS alone will be between 29% and 44%.”

Example text using strategy 1:

1. Comparison of Treatment A versus Treatment B

Primary outcomes

1.1 Live birth
Three studies reported live birth and for one study, we obtained this information after we contacted study authors.

1.1.1 Primary analysis (low risk of bias only)
Due to the high risk of bias associated with some studies, we conducted a primary analysis excluding studies at high or unclear risk of bias. This analysis yielded one study (Blogs 2020). We are uncertain whether Treatment A compared to Treatment B has an effect on cumulative live birth rate (RR 1.11, 95% CI 0.78 to 1.59, 1 study, 210 women; low-quality evidence; Analysis 1.1). Evidence suggests that if the chance of live birth following Treatment B is assumed to be 34%, then the chance with Treatment A would be 27% to 55%.

1.1.2 Sensitivity analysis
When all studies reporting cumulative live birth were included in the sensitivity analysis, we are uncertain of the effect of Treatment A compared to Treatment B on cumulative live birth rate (RR 1.00, 95% CI 0.92 to 1.09, 3 studies, 621 women; low-quality evidence; Analysis 1.1.2). The evidence suggests that if the chance of live birth following Treatment B is assumed to be 37%, the chance following Treatment A would be between 34% and 40%.
1.2 Multiple pregnancy
Four studies reported multiple pregnancy rate (Blogs 2020; XX 2019; YY 2015; ZZ 2019)

1.2.1 Primary analysis (low risk of bias only)
When the primary analysis was restricted to studies at low risk of selection bias, two studies were included. Treatment A may reduce multiple pregnancy rates compared with Treatment B (RR 0.10, 95% CI 0.02 to 0.28; 2 studies, 379 women; low-quality evidence; Analysis 1.2). This suggests that if the chance of multiple pregnancy following Treatment B is 13%, then the chance following Treatment A would be 0% to 3%.

1.1.2 Sensitivity analysis
When all studies reporting multiple pregnancy were included in the sensitivity analysis, Treatment A probably reduces multiple pregnancy rates compared with Treatment B (RR 0.04, 95% CI 0.01 to 0.15, 4 studies, 811 women; moderate-quality evidence; Analysis 1.2.2). This suggests that if the risk of multiple pregnancy following Treatment B is assumed to be 13%, the risk following Treatment A would be between 0% and 2%.

Secondary outcomes
1.3 Other adverse events
No studies reported on other adverse events

- When using strategy 1: if there are no studies at low risk of bias to include in the primary analysis, ensure you report this and report the sensitivity analysis including all studies reporting the outcome of interest.
 For example:
 1.4.1 Primary analysis (overall low risk of bias only)
 This analysis was not performed, as no studies were at low risk of bias.

- If you are using strategy 2, you will need to list results for the different levels of risk of bias e.g. 1.1.1 studies with low risk of bias, 1.1.2 studies with unclear risk of bias, 1.1.3 studies at high risk of bias, 1.1.4 all studies regardless of bias.

- If using strategy 3: present results under each outcome and add details on sensitivity analysis under the relevant outcome as defined in the methods.
GRADE evidence table – suggested statements
The following wording should be used for interpretation of findings:

<table>
<thead>
<tr>
<th>Level (quality/certainty) of evidence</th>
<th>Important benefit or harm* (e.g. absolute increase or decrease of on average at least 5% in live birth; 1 not in CI)</th>
<th>Less important benefit or harm* (e.g. absolute increase or decrease between 1 and 5% in live birth; 1 not in CI)</th>
<th>No important benefit/harm or null effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>improves*</td>
<td>improves slightly</td>
<td>little or no difference in [outcome]</td>
</tr>
<tr>
<td>Moderate</td>
<td>probably improves</td>
<td>probably improves slightly</td>
<td>probably little or no difference in [outcome]</td>
</tr>
</tbody>
</table>
| Low | may improve | may improve slightly | In case of a wide confidence interval with an absolute difference to the left or right of at least 5% for pregnancy outcomes: ** We are uncertain of the effect of [intervention]**
| | | | When the 95% CI of the absolute difference is 5% or less a better statement would be: ”The analysis ruled out a clinically relevant difference but the quality of the evidence was low” (rare for low quality evidence). |
| Very low | We are uncertain whether [intervention] improves [outcome]** | | |
| No events or rare events | Use comments in SoF table in a plainer language or summarise the results | | |
| No studies | No studies were found that looked at [outcome] | | |

* Substitute the appropriate verb for ‘improves’ throughout the table, depending on the results: for example, ‘increases’, ‘reduces’, ‘leads to’, ‘prevents’.

** You can also say “due to wide confidence interval (CI), we are uncertain / it is unclear”. Use this this wording for moderate quality evidence as well in case of wide CI.

*** There is a debate about whether results which are rated as ‘very low quality’ should present numbers or not. Both approaches are currently used.

* What is considered a clinically important benefit or harm? Predefine this in the protocol or update. For instance, for live birth we may consider an increase or decrease of at least 5% to be of important benefit or harm.
Part F- Discussion

No text should appear directly under this heading

Summary of main results

- Briefly summarise the main review findings, directly addressing the objectives. Highlight any outstanding uncertainties, balancing important benefits against important harms. Express results in the most consumer-friendly way possible. Refer to quality/certainty of the evidence from the summary of findings (SoF) table.

Overall completeness and applicability of evidence

- This section addresses the external validity of the review.
 - Did the included studies answer the review question?
 - Were relevant participants, interventions and outcomes investigated?
 - Do the review findings support current practice?
 - Comment on studies that measured outcomes but had no ‘usable’ data.

Quality of the evidence

- This section addresses the internal validity of the review.
 - How robust are the conclusions?
 - Use the GRADE ratings from the SoF table to describe the quality/certainty of the evidence for each comparison and use the footnotes from the SoF table to summarise the limitations of the evidence.
 - Discuss limitations of the review at study and outcome level (e.g. regarding risk of bias), and at review-level (e.g. incomplete identification of studies, reporting bias).

Potential biases in the review process

- Comment on the strengths and limitations of the review process.
 - Were all relevant studies identified?
 - Could review authors’ methods have introduced bias?

Agreements and disagreements with other studies or reviews

- How do the review findings fit into the wider research context?
Part G - Authors' Conclusions

Implications for practice
- We suggest making this identical to the conclusions in the abstract (copy and paste)
- Do not go beyond the evidence reviewed, mention GRADE ratings
- If relevant, summarise the likely benefits and risks of the intervention and for whom it should be considered.

Implications for research
- Which questions have been well answered (no further trials needed?)
- Which questions remain unanswered (further trials needed?)
- Whether further trials in selected populations are warranted
- Identify any new research areas (dose modification, combined therapies etc)
- If recommending further research, structure the implications for research to address the nature of evidence required, including population, intervention comparison, outcome, and type of study.

Differences between protocol and review
- If planning any departures from the Methods specified in the protocol, check with editorial base first.
- If changes are approved, you must document and justify the changes in the ‘Differences between protocol and review’ section.
- Before checking in your review for editorial approval check the RevMan Web Dashboard for Validation Errors and Warnings, or if using RevMan 5.4.1 run a validation report.
Part H - Copy-Editing

All Cochrane Reviews (protocols, full reviews and updates) are copy-edited before publication. Prior to copy-editing, all submissions are checked for readiness for copy-editing. This assessment focuses on areas such as structure and content of key sections, in-text citations, consistency and formatting of outcomes, table formatting, standard of English, and quality of references. Here we provide some tips to help you prepare your review according to the guidelines. To find out more about Cochrane’s copy-editing policy and guideline go to Editorial and Publishing Policy Resource Copy-Editing.

Plain language summary
Provide explanations in plain English for all medical and scientific terms.

PRISMA diagram
Make sure that the numbers of trials included in the diagram add up and match the numbers in the text.

In-Text citations
- Ensure that citations in brackets are located just ahead of punctuation (see Citing References in the Cochrane Style Manual).

Characteristics of included studies and risk of bias tables
- Don’t add full stops at ends of incomplete sentences, e.g. ‘Unclear’ not ‘Unclear.’
- Follow colons with lower case letters (except when followed by a name).
- RoB tables - insert ‘Quote’ before all quotations. Example: Quote: "Once allocated, the treatment was revealed to both the investigator and the patient."
- Use abbreviations used in text throughout the table.
- Insert a list of abbreviations used in the tables at the end of the tables in the Footnotes section.

References
- Check the formatting of all references (see Reference types) including full stops, capitalisation in titles, italics, page numbers.
- For references with more than six authors, list the first six authors followed by ‘et al’.

General
- Ensure that all abbreviations are defined in full on first use separately in abstract, PLS, Main text, and Authors’ conclusions.

Formatting of symbols
- Use ‘to’ instead of ‘-’ to denote ranges in text (OK to use ‘-’ in tables).
- Use ‘mL’ and not ‘ml’ or ‘mLs’ throughout.
- Use the correct spacing around symbols such as = < > (see Symbols and special characters).
- Use round brackets (find out more about Punctuation).